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Abstract —A techniqne based on the null-field method is developed to

investigate the resonance frequencies and the qnality factors of isolated

composite dielectric/ferrite resonators. A method of identifying the reso-

nant modes is snggested for nonspherical resonators by analyzing the

peaks of their scattering cross sections in the resonance frequency range.

Compnted resonance frequencies and Q factors for composite resonators,

such as double disks and tubular resonators with ferrite core, are compared

with published calculations and experiments whenever possible. These

comparisons show that the present technique is an effective and flexible

one for investigating composite resonators with relatively complicated

geometries.

I, INTRODUCTION

D IELECTRIC resonators for applications in mi-

crowave and millimeter-wave systems have received

increasing attention during the past decade. Many analytic

and numerical methods have been developed for the analy-

sis of such resonators. For example, there are the perfect

magnetic conducting wall (PMC) methods [1] and the

dielectric waveguide methods [2] as well as their perturba-

tional corrections and variational improvements [3] for

cylindric resonators; various radial and axial mode match-

ing methods [4]–[6] for shielded resonators; the asymptotic

expansion methods [7], [8] for resonators with very high

permittivities; the moment method based on the surface

integral techniques [9], [10] for isolated resonators; and the

general mode-matching approaches using Green’s dyadic

functions or transverse modes in expanding the interior

and exterior fields for shielded or open homogeneous

resonators [11], [12]. The merits and shortcomings of most

of these methods are described and compared in [3] and

[11].

In the present article, we utilize the null-field method,

which is also called the T-matrix method or the extended

boundary condition method, for the investigation of inho-

mogeneous dielectric and ferrite resonators with star-

shaped geometries and structures (for example, pillboxes,

rings, double disks, and superellipsoids) for any azimuthal

variation (including hybrid modes with m # 0). The method

can be used to analyze both isolated and metallic shielded
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resonators. In this paper, we shall concentrate our atten-

tion on isolated resonators (permeable resonators in free

space). The null-field method was mainly developed for

scattering problems from both homogeneous [13], [14] and

composite scatterers [15], [16]. It has also been employed

to investigate passbands of electromagnetic waveguides

[17], [18], resonance scattering of homogeneous dielectric

objects [19], and natural frequencies of conducting disks

[20]. A formulation for transient fields was given in [21]

and [22]. This formulation provides in particular an alter-

native way of finding the complex resonance frequencies.

However, in the present work we base our computations

on the time-harmonic null-field approach. An excellent

review of complex frequency computations in this frame-

work is given in [20]. Extensive computations of complex

resonance frequencies using this approach have been per-

formed for perfectly reflecting objects in acoustics, electro-

magnetic, and elastodynamics and for dielectrically coated

spheres (see, e.g., [23], [24] and references given therein). In

[25], the time-harmonic null-field approach was used to

find complex resonance frequencies of a dielectric res-

onator.

The main procedure of the null-field approach to reso-

nance problems can be summarized as follows. The surface

fields (electric and magnetic currents) on all surfaces and

interfaces between homogeneous parts of a composite body,

which are excited by an incident field, are approximated in

terms of global expansion functions with as-yet-unknown

coefficients. By applying the null part of Green’s second

theorem to every homogeneous region of the resonator and

introducing those expansions of surface fields and the

boundary conditions, an infinite homogeneous system of

simultaneous linear equations is obtained for the expan-

sion coefficients under zero excitation. This system has

nontrivial solutions only when its determinant vanishes.

Hence, the resonance frequencies can be found by search-

ing for the zeros of the determinant. In practice, the

system is truncated to a finite size and computations are
repeated with increasing truncation orders until a specific

convergence requirement is met.

A brief review of a null-field approach derived in [26],

which is suitable for analysis of an isolated composite

dielectric and/or ferrite resonator, is given in Section 11.
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Fig. 1. Geometry and notations of a composite resonator consisting of
three homogeneous parts.

In principle, the method described in Section II is applica-

ble for general three-dimensional star-shaped resonators.

In Section III we discuss the classification of TE, TM, and

HEM modes and compare our results with published data

for axisymmetric resonators of the kind encountered in

actual microwave circuits. Results of composite resonators

are given in Section IV, in particular for a type of fre-

quency tunable resonator that consists of a dielectric ring

and a ferrite core. Section V gives some general concluding

remarks.

II. FORMULATIONS

We consider the general case of a resonator which

consists of N homogeneous parts (an example with three

homogeneous parts is given in Fig. 1). We assume that it

has a star-shaped core, occupying the volume VN, and

N – 1 parts which are not required to be star-shaped

occupying the volumes ~., i =1,2, -.., N – 1. An object is

said to be star-shaped if one can find an interior point

such that the magnitude r( 19,@) of the radius vector F

from this point to any point on the surface of the object is

a single-valued function of the spherical angles 6’ and +.

Hence, a fixed origin O can be chosen inside VN and

vector spherical waves or vector spherical harmonics de-

fined with respect to this origin can be used to approxi-

mate the surface fields. The composite resonator is now

assumed to have the geometric property that if one re-

moves the homogeneous parts one by one, starting from VI

and ending at V~T, ~ in the order of increasing index, then
at each step the exterior bounding surface of the remaining

object is star shaped as seen from the origin O. As an

example, the three-part resonator shown in Fig. 1 satisfies

this requirement. In the following we also assume that the

exterior region V. is filled with homogeneous material and

that the electromagnetic properties of the homogeneous

material in every region ~, i = 0,1,. ... N, can be de-

scribed by a scalar relative permittivit y cl and a scalar

relative permeability pi. Then the wavenumber kZ in ~ can

be expressed in terms of a signal frequency, v, as k, =

ko~ = 27vfi/c, where c is the speed of light in
vacuum.

We denote the bounding surface of the volume Z~=,. ~~

by S,, i= O,l,. . ., N – 1, and the outward unit normal on

S, by fi,. Taking the object in Fig. 1 as an example, we find

that SO is the enclosing surface of the whole object, SI the

exterior surface of V2, and S2 the interface between Vz and

Vs. We note that all of the surfaces S1, i = 0,1,. ... N– 1,

are closed and that the adjacent surfaces S,_ ~ and S, may

overlap in some area as SO and SI do on the right side of

the object in Fig. 1, but they never intersect (cross) one

another. Furthermore, we assume that there is a thin layer

inside the common part of Si _ ~ and Si, if there is any

common part at all, having material properties ~, and p,.

Then we obtain a fictitious layered object where each

annular region ~. i =1,2,. , ., N – 1, is bounded externally

by SC_~ and internally by S,. T~e electric field in the
annular region ~ is denoted by El. It has been shown in

[26] that it is feasible to first derive formulations consider-

ing the layered structure, and then compute results for the

real composite object by setting the thickness equal to zero

for all the fictitious layers inside the common parts of the

surfaces. Various null-field approaches to scattering from

layered scatterers are derived and discussed in [26] -[28]. In

the present article we make use of the general formulation

given in [26, sec. IV]. Numerical experiments suggest that

in general this is the most suitable one for the open

dielectric and ferrite resonators considered here.

Suppose that an object is excited by a known incident

field &’. The total field in the exterior region can be

expressed as the sum of the incident field & and the

unknown scattered field &: ~0( 7) = l?in( 7’)+ &(F).

As is well known, the incident and scattered fields can be

expanded in terms of regular and outgoing spherical waves,

respectively (see, e.g., [27]):

@(F) = ~anlte~n(kO~)
n

*(F) = ~f.~’(ko~).
n

The outgoing spherical waves are defined as

~.(k~) - ~rom[(k~) - ~,(;) ,,,l(kF) -

-y;~(k-lv X)’

(1)

(2)

(3)

where

‘r=l,2 a = e, o (“even” or “odd”)

m= O,l,. ... l 1=1,2,. -.

(2-amo)(21+ 1)(1- m)!
Yml =

4~1(1+1)(1+ m)! “

The regular wave Re~~(kF) is defined in an analogous

way with the spherical Hankel function k fl)( kr ) replaced

by the spherical Bessel function jl(kr). An abbreviated

notation using the multi-index n = (~, o, m, 1) has been

used. The time factor is e – ‘tit. The expansion (1) is valid
inside any sphere with center at O which does not contain

any of the sources of @’. The expansion (2) is valid

outside any sphere with center at O which encloses the

exterior surface of the resonator. An implicit relation be-
tween { fn } and { u ~} is obtained from Green’s second
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theorem applied to the region VO [13]. The null part gives

(the “null-field equations”):

+;.(koF’) ”(fiox(v’xio))]ds’ (4)

and the remaining part of the theorem gives

f.= %~o[v’x~eJn(W’’)(fiO x JZo)

+l?e~~(koF’) .(iio X( V’X&))]d~’ (5)

In order to obtain matrix ~elations between+{~~}, {an}

and the surface fields f x E. and f x (V X .liO), we need

to take into account the boundary conditions on all inter-

faces. By considering the resonator as a limit of a” layered”

object, one can write the boundary condition as

WIOV+’’XEU’)) = (l/P1+Jfiz X[V’XE+U’))
(7)

F’on Sl; i=o,l,. ... l–l.

The expansions of the surface fields are written as

i=l,2,. ... N

on the inside of S1_ ~. In these expansions, { ~~ } and

are two arbitrary sets of global functions which are

plete on the corresponding surface (these sets may be

identical to each other). As discussed in [14] and [26],

many types of expansions are available

present article we shall only use the sets

F; - lte~H(kNF)

d:-vxlle~.(k.~)

on the surface of the core, SN_ 1, which

obtain a~N) = /3~N) (cf., e.g., [14]), and

~~ ~ ~~f ~ A+
n

for (8). In the

(9)

(lo)

means that we

(11)

on the outer surfaces S’l, i = 0,1,. 0., N – 2, where A+. de-

n~tes the vector spherical harmonics. The explicit form of

A. is

(12)

where the multi-index n and the normalization factor y~l

are the same as in (3). Our numerical experience indicates

that the choice given by (11) is generally the most useful

one.

Equations ,(6)-(8) are now introduced into (4) and (5)

and with the use of a vector and matrix notation (ii’= f a.. 1.

Q ~ { Qnn}, etc.), we obtain

[ (0$) (0$) 1d’=i Q~ ~ ~’ Z(l) + Q& ~ d“ P+(l) (13)

f= - i [Q}(Reio, d’)il(l) + Q}(Re~o, 6“)FoJ] (14)

where elements of the Q matrices are defined by

[Qml’wnn=q[V’xin(kpr)]xdn”filds’

[Q~(@,~)]nnr==~,~&[@n(~,~)

.iin,] .fiids’ (15)

Q“(W)‘:QW.A+QWV4
Applying Green’s theorem to the “annular” region ~,

i=l,2,. . . , N – 1, step by step, and introducing boundary

conditions and corresponding expansions, we get the fol-

lowing relations between the coefficients of the surface

fields:

Q~-l(l?e~, @’]d(Z) + Q~-’(l?e~,@’’]~)’)

= Q~(~e~,6’)ii(’+’) + Q~(lle~,@’’]~(z+’) (16)

Q~-’(~~’)~(z)+Q~-’(~)~())(’)
nQ~(;,,@j~(i+l)+Qj(;, &/)~(1+1) (17)

fori=l,2,. ..,ll -l.

The elimination of tlhe surface field coefficients in (13)-(17)

can be done in such a way that F(i), ~(’), i =1, ” o“, iV - 1,

are expressed in terms of Z(N). We define

If the result of the above-mentioned scheme is introduced

into (13) and (14), the latter can be written as

Z’= iQ(N, ~)i#N) (19)

7:= - iQ(N, lle~) 7(N) (20)

where

MQ(N, Re~)
=Q(O,O). Q-l(O,l)-Q(l,l)

Q(N, ~)

. . .. Q(i. i). Q-l(i, i+l)

. . .. Q(N-2. N-2)

.Q-’(N-2, N-1)

The scattered field of an object is the solution of an

inhomogcneous wave equation under the excitation of an

incident field, while the resonant field of the object is the

eigensolution of the corresponding homogeneous equation

(witho~t any excitation). This means that the scattered

field ES’ can be obtained from (l), (2), (19), and (20) if

there is a known incident wave ~ (i.e., Z is known), and

..,, ,. that the resonant fields can also be computed from the
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same equations by setting Z= O. In order to have nontriv-

ial solutions of (20), i.e., resonant fields of various reso-

nant modes, when ii= O, the determinant of Q( ~, ~) in

(19) must be zero:

det[Q(lV, ~)] =0. (22)

From (21), (18), and (15) we see that the elements of the

matrix Q( IV, ~) depend upon the geometry and the mate-

rial properties of a resonator as well as the wavenumber

ko. For a given resonator, one can compute the resonance

frequencies by searching for kO’s which satisfy (22). Sup-

pose that the value kO (i= 1,2, . ..) is the ith root of (22);

the resonance frequencies u, of the resonator can be ob-

tained by

cRe(kO, )
vi =

2T “
(23)

The fact that the solutions of (22) are all found to be

complex, even though the material losses have been ne-

glected, shows that all resonant modes of isolated res-

onators are “leaky.” The intrinsic quality factors Q, of the

i th modes due to radiation loss can therefore be defined as

(details can be found, e.g., in [3] and [29])

stored energy Re (k,, )
Q,= — (24)

radiated energy per cycle – 21m(k0, ) “

The explicit form of the Q matrices depends also on the

expansion functions, i.e., on the choices (9)–(11) (e.g., the

regular spherical waves can also be used in (11) instead of

the spherical harmonic, cf. [14]). However, the zeros of (22)

should be independent of these choices and this fact can

be used as a check on the numerical results. Once a search

in the complex k. plane has yielded a Q matrix which

satisfies (22) to a sufficient degree of accuracy, it is rela-

tively easy to calculate a corresponding coefficient vector

‘(N) of the surface current on SN_ ~, by, e.g., a Gaussiana!

elimination procedure, provided the kO is a simple zero of

the Q matrix. In consequence, a norm~lized resonant field

in the exterior region can be obtained by introducing the

coefficient vector Z(’) mto (20) and then (2). The proce-

dure for computing surface currents and resonant fields

mentioned above is very similar to that used in the mo-

ment method [10]. However, we do not discuss the proce-

dure in detail in the present paper.

III. CLASSIFICATION OF MODES

In practical calculations the determinant in (22) can

only be obtained from a truncated Q matrix. Therefore,

only an approximation of the resonance frequency and

quality factor of a certain mode can be obtained, except

for concentric layered spherical objects of which the Q

matrices are diagonal. As the truncation size, denoted by

1~=, increases, this approximation can be expected to

converge to a definite value. Therefore the behavior of the

results as a function of truncation order plays an impor-

tant role in assessing the accuracy of the computed results.

For a Q matrix of truncation size 1~= (1=1,2,. . . . l~z.,

and m = 0,1,. ... I,cf. (3)), the matrix order is given by
2( lma +2) x /mm. That means we have to calculate, for,

e.g.! 1~~ =10, Q matrices of order 240x240 and their
determinants in the search process. In the case of res-

onators with general geometry, most of the Q matrix

elements computed from the surface integrations accord-

ing to (15) do not vanish. However, for certain special

geometries, such as axisymmetric bodies, the computations

can be reduced substantially. In an axisymmetric case, the

surf ace integrations in (15) degenerate to line integrations

over the contours of corresponding surfaces, and all ele-

ments in off-diagonal blocks (where m # m’) are equal

zero. A general form of the Q matrices for an axisymmet-

ric object is written as follows:

A; ~00
o

0 ,//

A; O
0

0 D;r

o

0

0

le 20 10 2e

~’=()

o

o

0

le 20 10 2e

~f=l

o

0

le 20 10 Ze

~f=z

(1

—

a

—

a

—

or

le

20

10
M=()

2e

le

20 ~=1
10

2e

le

20 ~=z

10

2e

. . .

. . .

. . .
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The decomposition of the Q matrices into smaller diagonal

blocks indicates that we may search zeros for a particular

value of the index m, which amounts to choosing a partic-

ular azimuthal dependence of the resonant field in ad-

vance. Furthermore, since the determinants of

are identical, the zeros need only be searched for in a block

of order 2 x l~m for a fixed m (m > O), which correspond

to hybrid electromagnetic mQdes (HEM): For m = O, the

block is decoupled into even smaller pieces+with respe$t to

the tw~ types of vector spherical waves 11,91 and +2,01.
Since ~l,ol has only an d+ component while !2,01 has only

.4, and i?. components (cf. (3)), the zeros computed from

the small block A~l, correspond to TE and from the block

Dfi, to TM resonant modes, respectively.

The zeros of the matrix determinant of the blocks can be

searched for in the complex plane by means of, e.g.,

Muller’s method [30], or a similar iterative procedure which

does not require a knowledge of the derivative of the

function whose zeros are being sought. The iteration is

terminated when the change between two consecutively

computed k. values is less than some prescribed small

value. As a rule, these procedures must be supplied with

two starting points reasonably close to the resonance fre-

quency of the mode of interest. These starting points can

be obtained, say, by a preliminary analysis of the scatter-

ing cross sections u, [13] of the resonator in the resonance

range by using (19), (20), and

US=; w
On

(25)

under the illumination of two perpendicular plane waves

(TE and TM incident waves, as shown in Fig. 2). The

peaks in the curves of the scattering cross sections can also

be used to identify the resonant modes, as was done by

Barber et al. in [19] for homogeneous dielectric spheres.

The classes of TE, TM, and HEM modes are easily distin-

guished from the curves of the scattering cross sections,

since we never see the peaks of TM resonant modes from

the curves of the TE incidence and vice versa. The reso-

nance frequencies of different modes of axisymmetric bod-

ies from the same class are distinguished by three sub-

scripts in thiS paper, ‘i ~ v~{~~P. The first index, m, always

refers to the azimuthal dependence of the mode as either

cos mcp or sin mb, while the second and the third index, 1

and 8 + ~, refer to the numbers of field extrema within the

resonator in the radial and axial directions, respectively,

where 8, 0<8<1, is used to denote fractional half-period

field variations in the resonator along the symmetry

axis [3].

As an example, consider a cylindrical dielectric res-

onator in free space which has been analyzed by many

authors using different methods. The resonator material is

El= 38, its radius is a = 5.25 mm, and its length is L = 4.6

mm. First the scattering cross sections o, are computed

and then plotted in Fig. 2. The first peak on the left side of

Fig. 2(a) can be identified as the TE018 mode because there

4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
v (GHz)

(a)

0, /r7a2

61 1

15— 8 =. o“
4

4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
v (GHz)

(b)

Fig. 2. Normalized scattering cross sections of a finite dielectric cylin-
der. (a) TE incidence. (b) TM incidence.

is no peak at the same position in Fig. 2(b) and a coupling

between the incident field and the resonance can occur at

all 6 angles except normal incidence (e.g., d = 00), whereas

from neither 8 = 0° nor O = 90° can resonance be observed

for the TE018+ ~ mode. The second peak from the left in

Fig. 2(a) is identified as the HEM118, since the electric far

field of the HEM no modes does not have an ~+ comPo_
nent (cf., e.g., [10]), and thus there is no peak response for

the TE incidence from 0 = 90° at this frequency. This fact

suggests that the best experimental setup for measuring the

resonance properties of the TE018 mode could be the worst

for the HEMll& mode, i.e., accurate experimental observa-

tions of the resonance of the HEM ~1~ mode are not possi-
ble for the resonator in free space, If one tries to observe a

TE resonant field of the mode from 6 = 90°. Furthermore,

the third peak in Fig. 2(a) is the HEM12a since no peak

response for the TM incidence can be seen from O = 90°,

and the fourth is the HEM21~ because no peak is observed

for the TE incidence from f3 = 0°, 90° or TM incidence

from O = 0°. The remaining peaks could be classified in a

similar way (cf. the field patterns of the resonant modes in,
e.g., [10]). Of course, there exist many modes which have

similar scattering characteristics as a function of f3 at

different frequencies, such as the TE018 and TEo2& modes

in Fig. 2. In these cases, a classification of these resonant

modes requires calculations of the resonant field in the

vicinity of the resonator.
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TABLE I

COMPUTED RESONANCE FREQUENCIES AND QUALITY FACTORS VERSUS

DIFFERENT TRUNCATION SIZES In,m COMPA=D WITH MEASUREMENTS AS

WELL AS WITH RESULTS FROM OTHER METHODS FOR A DIELECTRIC

PILLBOX (Cl = 38, PI =1, a = 5.25 mm, L =46 mm) IN FREE SPACE

1m..

6

8

10

12

14

16

Measured[lO]

Moment Method[lO]

Perturbation of PMC[3]

Asymptotic Method[8]

1ma.

6

8

10

12

14

16

Measured[lO]

Moment Method[IO]

Asymptotic Method[8]

Resonant Frequencies (GH.)

TEo I& HEMII& HEMI,6 TMo16 HEMz16 TE(m+I HEMZZS TEo M

4.8619 6.3391 6.6639 7.4659 7.7543 6.3127 8.5035 9.1722

4.8604 6.3450 6.6598 7.5371 7.7636 8.3336 6.4832 9.1470

4.8603 6.3450 6.6537 7.5370 7.7606 8.3315 8.4771 9.1521

4.8604 6.3450 6.6530 7.5373 7.7616 8.3308 8.4780 9.1535

4.8604 6.3450 6.6527 7.5380 7.7621 8.3310 8.4779 9.1337

4.8604 6.3450 6.6520 7.5384 7.7621 8.3311 8.4768 9.1535

4.85 — 6.64 7.60 7.81 — — —

4,629 6.333 6,638 7.524 7.752 — — —

4.8551 — 8.1937 —

4.87 — — —

Quality Factors due to radiation

TEo16 HEMIIS HEM, M TMo16 HEM2,6 TEOM+, HEMZZS TEOM

40.848 30.853 57.009 59.199 333.28 303.43 1206.0 45.804

40.819 30.945 54.059 75.042 337.51 301.42 1137.9 44065

40.819 30.896 51.082 75.790 339.08 300.97 1038.6 43.645

40.820 30.852 50.809 76.075 337.98 300.91 1036.5 43.743

40.819 30.849 50.705 76.694 337.55 301.00 1030.0 43.747

40.819 30.853 50.316 76.921 337.66 301.02 1018.4 43736

51 — 64 86 204— ——

45.8 30.7 52.1 76.8 327.1 — — —

42.31 — — — — —

The method of extracting the starting points from the ing a resonant cylindrical dielectric cavity antenna [31].

peaks of the cross sections is very s~m-ilar to that of

analyzing experimental curves in transmission measure-

ment, i.e., taking the position of a peak as an approximate

resonance frequency and the ratio of the height to the half

width of the peak as an approximate quality factor. From

these starting points, more accurate resonance frequencies

and Q factors are computed and listed in Table I. The

convergence of the present method is also shown in Table

I for different truncation orders. The agreement between

the results of the null-field method and other methods is

reasonably good.

The null-field method has also been used to compute a

universal mode chart for cylindrical dielectric resonators

with c = 38 in free space. The chart is shown in Fig. 3,

displaying the value of kOu and the quality factor as a

function of the ratio, a/L, of the resonator radius to

length for the eight lower modes listed in Table I. Five of

the Itoa curves are also compared with the results com-

puted using the method of moments [9] in Fig. 3. In

general the results from the two methods agree very well

except for those of the TM018 mode at higher aspect ratio

(i:e., at the two ends of the TM018 curve). Moreover, curves

computed using the present method are very smooth and

no kinks can be observed on the present scale. Some

computed results for the TEOla and HEMII$ modes from a

general mode-matching method [12] are also included in

Fig. 3(a) for comparison. A good agreement can be ob-

served. From Fig. 3(b) we see that the HEM118 mode has

the lowest Q value, i.e., the strongest radiation effect,

when a/L >0.85. This mode has been utilized in design-

However, when the length, L, is equal to or greater than

the diameter, 2a, of a pillbox (for the case ~ = 38), the

TM018 mode seems more suitable for use in an antenna.

As a third example, we show how the resonance fre-

quencies and quality factors change when the above-

mentioned cylindrical homogeneous resonator gradually

changes half of its lateral wall and upper flat surface into

half a spheroidal surface (cf. Fig. 4) according to the

superellipsoid function (x ‘/an + y ‘/b” =1, with n chang-

ing from infinity to 2). Fig. 4 depicts the theoretical mode

chart of some lower resonant modes of such a resonator.

From this figure one finds that, as expected, neither reso-

nance frequencies nor Q factors vary very much when the

upper edge of the pillbox is rounded off (the lower flat

surface of the pillbox is supposed to be mounted on a

substrate with its electrical properties close to those of free

space) and that curves of different modes do not intersect

each other; i.e., no degeneration occurs during smoothen-
ing.

In this section, the null-field method has been applied to

a study of homogeneous dielectric resonators. Examples of

composite resonators are given in the next section.

IV. COMPOSITE RESONATORS

Most composite resonators are designed with the pur-

pose of obtaining frequency tunable resonant elements in

microwave components, such as microwave filters and

oscillators [32]. Taking several composite structures of

resonators as examples, we compute frequency charts us-

ing the null-field method in this section.



ZHENG: COMPUTATION OF COMPLEX RESONANCE FREQUENCIES 959

k~a

)
1.5 -

/.,//
HEM116

1.25 -

1

0.75

./

0.,, o~ .,.
1.5 2 2.5 3 3.5

(a)

Q
5000

., 4

1000

500

100

50

10
.

[ I I I I , 1 , 1 I , I , I a/L
o 0.5 1 1.5 2 2.5 3 3.5

(b)

Fig. 3. Universal mode chart for isolated cylindrical dielectric res-

onators with relative permittivitycl =38. Lines arecomputed using the
present method. The bullets . ..arefrom themode matching method
in [12]. Other markers are from the method of moment [9]. (a) Reso-

nance. (b) Quality factors.

We first consider a structure of two dielectric (or ferrite)

disks which can be used in either a filter [33] or a circula-

tor [34]. The individual resonators in the structure are

cylindrical disks of radius r and thickness t which are

mounted coaxially and separated by a distance d. Assum-

ing that each resonator has the same electric constant and

that they are identical in size, the whole structure can be

described by taking So as the surface of a pillbox with

radius r and length L = 2t + d filled with the material of

the disks, and the core, V2, as a shallower pillbox with the

same radius r and length d having electromagnetic prop-

erties the same as the exterior medium (cf. Fig. 5). The

resonance frequencies of the two lowest TE modes, TEola

and TEola + ~, as functions of the distance d between the

two disks are computed and plotted in Fig. 5 for a

double-disk structure used in a frequency-stabilized band-

rejection filter. Some measured results [33] are also in-

cluded in Fig. 5 for comparison. The maximum relative

difference of calculated results with respect to measure-

ments is 1.85 percent for the case ~ = 96 and 2.90 percent

for t = 80, respectively. The frequency tuning range for d

varying from O to t is about 15 percent for both cases. In

this range, the relation between frequency and k is rela-
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Fig. 4. Resonance frequencies and quality factors of the six lowest
modes of a partially smoothened cylinder versus the exponential, n, of

the superellipsoid function ( xH/an + yn/bn = 1). The values indicated

by bullets, . . . . on the right-hand side vertical axes are extracted from
the corresponding curves in Fig. 3 for a pillbox resonator with the same
radius and length. (a) Resonance frequencies. (b) Quality factors.
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Fig. 5. Resonance frequencies of the two lowest TE modes of a double

dlelectnc disk resonator with different permittivities versus the distance
between the two disks. The measured results are adopted from [33].

tively far from linear. If d is sufficiently large, the reso-
nance frequencies of both the TEOla and TE018 + ~ modes of

the double disk gradually approach those of the TEola

mode of one of the single disks.

The double-disk resonator is a kind of mechanical fre-

quency tuning device. The resonance frequency can also be

tuned electrical~y by attaching a microwave ferrite disk on
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Fig. 6. Resonance frequencies and quatity factors of seven lower modes
of a dielectric ring with a ferrite cylindric plug versus the permeability

of the plug. The circles in the figure represent calculations using the

asymptotic method for the dielectric ring ( Cz =1, P2 =1). (a) Reso-

nance frequencies. (b) Quality factors.

a pillbox resonator and applying a magnetic field to it (cf.,

e.g., [35]). The magnetic field controls the magnetic proper-

ties of the ferrite, resulting in a shift in the resonance

frequency (the lowest mode TE018 was used). Tuning band-

widths of the order of 3 percent for this construction have

been reported [35]. Since the magnetic field is strongest

down the center, instead of on the flat faces, of a cylindri-

cal resonator for the TE018 mode, one would expect to

achieve a wider frequency tuning range by removing a

cylindrical dielectric plug from the resonator center and

inserting a ferrite one. Assuming that the permeability

tensor of the ferrite can be expressed by a scalar (e.g., a

demagnetized polycrystalline ferrite material, cf. [34]), and

noting that the permeability of partially magnetized fer-

rites is a certain function of the strength of the applied

magnetic field [36], one can approximately describe the

characteristic of a ferrite under an applied tunable mag-

netic field by changing the permeability of the ferrite. In

Fig. 6, a chart of resonance frequencies and Q values

versus different permeability values of a ferrite plug

mounted in a dielectric ring is given. The ring has the same

radius a, length L, and permittivity El as the pillbox

resonator in the first example in Section III. From Fig. 6,

one observes that the permittivity of the plug could be

changed from c~ = 1 to 15 without disturbing the resonant

frequency of the TEOIO mode too much since the electric

v (GHz)
5.4

E, , Ul ‘ ‘~a = 5.25mm

5.3

5.2

5.1

5.0

4.9

1- )

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7

d (mm)

Fig. 7. Resonance frequencies of the TEOlt mode of a conicatly shaped
dielectric ring with a ferrite conical plug versus the position of the plug
for different permeabilities,

field is weak for that mode near the resonator center. One

also observes that the HEM12a mode, when c~ =15 and

p2 >38 in the plug, becomes the lowest mode with a very

high Q value, which suggests that a much smaller res-

onator can be designed using this mode without any metal-

lic housing, provided a material with very high perme-

ability and very low loss is available. Furthermore, the

frequency tuning range can be easily obtained from Fig. 6

if one knows the relation between the permeability of a

ferrite and the strength of the applied magnetic field.

In order to increase the tuning range, a combination of

mechanical and electrical tuning may be employed by

giving the hole of the dielectric ring as well as the ferrite

plug a conical shape, as shown in Fig. 7. However, from

the calculated results in this figure, one can see that the

resonance frequency of the TE018 mode is not very sensi-

tive to displacements of the ferrite plug so long as the

permeability of the plug remains close to unity.

V. CONCLUSION

In this article we have employed an approach within the

general framework of the null-field method to investigate

the resonance properties of several kinds of composite

resonators. For the composite rotationally symmetric res-

onators discussed in the present paper, the null-field

method shows good convergence and reasonable agree-

ment with other computed and measured results. We are

also aware in our numerical experiments that for certain

geometries, e.g., a pillbox attached to a ferrite cylindrical

disk on one flat face, the expansion functions chosen in

(11) do not yield convergent results as good as those

produced by the regular spherical vector wave function

(cf., e.g., [14]). This fact suggests, as is mentioned in

Section II, that alternative choices of expansion functions

are often helpful in checking the computed results. All

computed results for composite resonators reported in the

present paper have been checked by using at least two

different expansions.

Finally, we note that it is of interest to carry out a

corresponding investigation concerning metallic shielded
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composite resonators. The results from such an investiga-

tion will bereported ina subsequent paper.
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