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Computation of Complex Resonance
Frequencies of Isolated
Composite Objects

WENXIN ZHENG

Abstract — A technique based on the null-field method is developed to
investigate the resonance frequencies and the quality factors of isolated
composite dielectric/ferrite resonators. A method of identifying the reso-
nant modes is suggested for nonspherical resonators by analyzing the
peaks of their scattering cross sections in the resonance frequency range.
Computed resonance frequencies and Q factors for composite resonators,
such as double disks and tubular resonators with ferrite core, are compared
with published calculations and experiments whenever possible. These
comparisons show that the present technique is an effective and flexible
one for investigating composite resonators with relatively complicated
geometries.

1. INTRODUCTION

IELECTRIC resonators for applications in mi-

crowave and millimeter-wave systems have received
increasing attention during the past decade. Many analytic
and numerical methods have been developed for the analy-
sis of such resonators. For example, there are the perfect
magnetic conducting wall (PMC) methods [1] and the
dielectric waveguide methods [2] as well as their perturba-
tional corrections and variational improvements [3] for
cylindric resonators; various radial and axial mode match-
ing methods [4]-[6] for shielded resonators; the asymptotic
expansion methods [7)], [8] for resonators with very high
permittivities; the moment method based on the surface
integral techniques [9], [10] for isolated resonators; and the
general mode-matching approaches using Green’s dyadic
functions or transverse modes in expanding the interior
and exterior fields for shielded or open homogeneous
resonators [11], [12]. The merits and shortcomings of most
of these methods are described and compared in [3] and
[11].

In the present article, we utilize the null-field method,
which is also called the T-matrix method or the extended
boundary condition method, for the investigation of inho-
mogeneous dielectric and ferrite resonators with star-
shaped geometries and structures (for example, pillboxes,
rings, double disks, and superellipsoids) for any azimuthal
variation (including hybrid modes with m # 0). The method
can be used to analyze both isolated and metallic shielded
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resonators. In this paper, we shall concentrate our atten-
tion on isolated resonators (permeable resonators in free
space). The null-field method was mainly developed for
scattering problems from both homogeneous [13], [14] and
composite scatterers [15], [16]. It has also been employed
to investigate passbands of electromagnetic waveguides
[17], [18], resonance scattering of homogeneous dielectric
objects [19], and natural frequencies of conducting disks
[20]. A formulation for transient fields was given in [21]
and {22]. This formulation provides in particular an alter-
native way of finding the complex resonance frequencies.
However, in the present work we base our computations
on the time-harmonic nulil-field approach. An excellent
review of complex frequency computations in this frame-
work is given in [20]. Extensive computations of complex
resonance frequencies using this approach have been per-
formed for perfectly reflecting objects in acoustics, electro-
magnetics, and elastodynamics and for dielectrically coated
spheres (see, e.g., [23], [24] and references given therein). In
[25], the time-harmonic null-field approach was used to
find complex resonance frequencies of a dielectric res-
onator.

The main procedure of the null-field approach to reso-
nance problems can be summarized as follows. The surface
fields (electric and magnetic currents) on all surfaces and
interfaces between homogeneous parts of a composite body,
which are excited by an incident field, are approximated in
terms of global expansion functions with as-yet-unknown
coefficients. By applying the null part of Green’s second
theorem to every homogeneous region of the resonator and
introducing those expansions of surface fields and the
boundary conditions, an infinite homogeneous system of
simultaneous linear equations is obtained for the expan-
sion coefficients under zero excitation. This system has
nontrivial solutions only when its determinant vanishes.
Hence, the resonance frequencies can be found by search-
ing for the zeros of the determinant. In practice, the
system is truncated to a finite size and computations are
repeated with increasing truncation orders until a specific
convergence requirement is met.

A brief review of a null-field approach derived in [26],
which is suitable for analysis of an isolated composite
dielectric and/or ferrite resonator, is given in Section II.
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Fig. 1. Geometry and notations of a composite resonator consisting of

three homogeneous parts.

In principle, the method described in Section II is applica-
ble for general three-dimensional star-shaped resonators.
In Section III we discuss the classification of TE, TM, and
HEM modes and compare our results with published data
for axisymmetric resonators of the kind encountered in
actual microwave circuits. Results of composite resonators
are given in Section IV, in particular for a type of fre-
quency tunable resonator that consists of a dielectric ring
and a ferrite core. Section V gives some general concluding
remarks.

II. FORMULATIONS

We consider the general case of a resonator which
consists of N homogeneous parts (an example with three
homogeneous parts is given in Fig. 1). We assume that it
has a star-shaped core, occupying the volume V,, and
N —1 parts which are not required to be star-shaped
occupying the volumes V,, i=1,2,---, N —1. An object is
said to be star-shaped if one can find an interior point

such that the magnitude r(6,¢) of the radius vector 7

from this point to any point on the surface of the object is
a single-valued function of the spherical angles 8 and ¢.
Hence, a fixed origin O can be chosen inside V, and
vector spherical waves or vector spherical harmonics de-
fined with respect to this origin can be used to approxi-
mate the surface fields. The composite resonator is now
assumed to have the geometric property that if one re-
moves the homogeneous parts one by one, starting from ¥V
and ending at V,,_; in the order of increasing index, then
at each step the exterior bounding surface of the remaining
object is star shaped as seen from the origin O. As an
example, the three-part resonator shown in Fig, 1 satisfies
this requirement. In the following we also assume that the
exterior region Vj is filled with homogeneous material and
that the electromagnetic properties of the homogeneous
material in every region V, i=0,1,---, N, can be de-
scribed by a scalar relative permittivity €, and a scalar
relative permeability x,. Then the wavenumber &, in V] can
be expressed in terms of a signal frequency, », as k,=

koje,m, =2mvje p, /c, where ¢ is the speed of light in
vacuum.

We denote the bounding surface of the volume L P
by S,, i=0,1,---, N—1, and the outward unit normal on

S, by 7. Taking the object in Fig. 1 as an example, we find
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that S, is the enclosing surface of the whole object, S| the
exterior surface of ¥, and S, the interface between V, and
V;. We note that all of the surfaces S,, i=0,1,---, N—1,
are closed and that the adjacent surfaces S,_; and S, may
overlap in some area as S, and S, do on the right side of
the object in Fig. 1, but they never intersect (cross) one
another. Furthermore, we assume that there is a thin layer
inside the common part of S;_; and S,, if there is any
common part at all, having material properties €, and p,.
Then we obtain a fictitious layered object where each
annular region V,. i =1,2,-- -, N -1, is bounded externally
by S,_; and 1nternally by S The electric field in the
annular reglon V. is denoted by E It has been shown in
[26] that it is feasible to first denve formulations consider-
ing the layered structure, and then compute results for the
real composite object by setting the thickness equal to zero
for all the fictitious layers inside the common parts of the
surfaces. Various null-field approaches to scattering from
layered scatterers are derived and discussed in [26]-[28]. In
the present article we make use of the general formulation
given in [26, sec. IV]. Numerical experiments suggest that
in general this is the most suitable one for the open
dielectric and ferrite resonators considered here.

Suppose that an object is excited by a known incident
field E™. The total field in the exterior reglon can be
expressed as the sum of the 1nc1dent field E™ and the
unknown scattered field E* O(r) E ln(;’)4— E SC(r)
As is well known, the 1nc1dent and scattered fields can be
expanded in terms of regular and outgoing spherical waves,
respectively (see, e.g., [27]):

E™(7) ZaRezH 7)
550(7)=an¢n(k07)-

The outgoing spherical waves are defined as
.‘P (kf) - mml(kr) ( )m/(kr) =

=1 (kv x)’

(1)
(2)

[krP”’(cosﬂ)(COSZZ:)h;U(kr)] (3)
where
r=1,2 o=e,o (“even” or “odd”)
m=0,1.---,1 [=1,2, -
(2—6,)21+1)({ —m)!
Tt T T Al (T4 1) (1 + m)!

The regular wave Rex[Tn(ki* ) is defined in an analogous
way with the spherical Hankel function h{"(kr) replaced
by the spherical Bessel function j(kr). An abbreviated
notation using the multi-index 7n = (7,0,m,[) has been
used. The time factor is e~ "“.. The expansion (1) is valid
inside any sphere with center at O which does not contain
any of the sources of E™ The expansion (2) is valid
outside any sphere with center at O which encloses the
exterior surface of the resonator. An implicit relation be-
tween {f,} and {a,} is obtained from Green’s second
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theorem applied to the region ¥V}, [13]. The null part gives
(the “null-field equations™):

zkf[vx¢

)'(ﬁOXEo)
+ 9, (koF’)- (ﬁox(v'x E)))]dS’ (4)

and the remaining part of the theorem gives
f,= ikofs [v'x Reds, (ko) (0 % E,)
0

+ Rey, (ko) (g (v'x Eo))| dS”. (5)
In order to obtain matrix relations between {f,}, {a,}
and the surface fields 7 X E and 7 X(V X EO) we need
to take into account the boundary conditions on all inter-
faces. By considering the resonator as a limit of a “layered”
object, one can write the boundary condition as

ﬁtxi(?,)=ﬁzXE_:+1(7/) (6)
(1/1U‘1)ﬁ1 X(V/X E:(?,)) = (l/n‘""‘1+1)ﬁt X(VIX E_:+l(?/))
(7)
i=0,1,---,N-1.
The expansions of the surface fields are written as

ﬁi;lx E(?) = ZaSzl')[ﬁz—lx 5»;]

B("[

- .
7 on S§;

A, 1 x(v X E(F)) = X&) ®)
i=1,2,--

on the inside of S,_;. In these expansions, {(B,;} and {‘5,;’}

are two arbitrary sets of global functions which are com-

plete on the corresponding surface (these sets may be

identical to each other). As discussed in [14] and [26],

many types of expansions are available for (§). In the

present article we shall only use the sets
;= Rey,,(kyF) 9

8’ =V X Rey,(kyF) (10)

on the surface of the core, Sy_;, which means that we
obtain a{™ =B (cf,, e.g., [14]), and

3 =0"=4, (11)
on the outer surfaces S, i=0,1,-.-, N —2, where /Tn de-
notes the vector spherical harmonics. The explicit form of
A, is

n

1( Ymi(F) = Yl/zvx[?P,'”(cosa)(C.osmq))]

sin mo

Al(fl)ml( P)=vrv {le(co a)(cf’s'"qb)]

sin mo
(12)

where the multi-index » and the normalization factor vy,
are the same as in (3). Our numerical experience indicates
that the choice given by (11) is generally the most useful
one.

Equations .(6)—(8) are now introduced into (4) and (5)
and with the use of a vector and matrix notation (&= {a,,},

955
= {an'}7 etC.), we obtain

a=i[Q5(¥0.®)a" + 03 (4, 878 (13)

f==i[@%(Redy, )@V + Q5 Rev,, 8| FV] (14)

where elements of the @ matrices are defined by
[03(¥,.8)] - kpfs[v X ¥, (k)] x 8,4, ds"
|05 (%,. )], =k [ - [%lk,7)

S, lu'p+ 1
-8, 4, ds"

05(%,.8) = 05(¥,.8)+03(¥,.v x8).

Applying Green’s theorem to the “annular” "

i=1,2,---, N—1, step by step, and introducing boundary

conditions and corresponding expansions, we get the fol-

lowing relations between the coefficients of the surface
fields:

Q51 Red,, ®')d" + Q31 Re,, 8") B
= 035(Rey, #)&""" + 03[ Re¥,, &) B (16)
(3,870 + 0§ (4,.87)F
=05(¥,.8)a " + 0§(y.,. 7)Y
fori=1,2,---,N—1.

The elimination of the surface field coefflclents in (13) a7

(15)

region V,

(17)

can be done in such a way that @?, g®, i=1,---, N-1,
are expressed in terms of @ We define
[ Q3(Re¥,. B), QF(Rev,. ")
Q(, j)= . (18)

Qj’z(\l/J’(I)l)’ Qg’(%,é”)
If the result of the above-mentioned scheme is introduced
into (13) and (14), the latter can be written as

7=iQ(N,y)a™ (19)
fq== —iQ(N, Re)@™ (20)
where
N, Rey
ON-RV)| 1 0.0)-071(0.1)-0(1.1)
o(N,v) |
- 0(i,i)-07Ni,i+1)
- Q(N=2,N-2)
0" (N-2,N-1)
QSN_I(ReJN—l’Re‘F(kN7)) (21)

QSN’I(‘PN—D Re‘:b(kzv?))

The scattered field of an object is the solution of an
inhomogeneous wave equation under the excitation of an
incident field, while the resonant field of the object is the
eigensolution of the corresponding homogeneous equation
(without any excitation). This means that the scattered
field E% can be obtained from (1) (2), (19) and (20) if
there is a known incident wave E ™ (i.e., @ is known), and
that the resonant fields can also be computed from the
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same equations by setting @ = 0. In order to have nontriv-
ial solutions of (20), ie., resonant fields of various reso-
nant modes, when @ =0, the determinant of Q(N, ) in
(19) must be zero:

det[@(N,¥)] =0. (22)
From (21), (18), and (15) we see that the elements of the
matrix Q(N, 1[7 ) depend upon the geometry and the mate-
rial properties of a resonator as well as the wavenumber
k,. For a given resonator, one can compute the resonance
frequencies by searching for k,’s which satisfy (22). Sup-
pose that the value k, (i =1,2,---)is the ith root of (22);
the resonance frequencies vy, of the resonator can be ob-
tained by

Relk
y,= _C_LOI)_ (23)
2a

The fact that the solutions of (22) are all found to be
complex, even though the material losses have been ne-
glected, shows that all resonant modes of isolated res-
onators are “leaky.” The intrinsic quality factors Q, of the
ith modes due to radiation loss can therefore be defined as
(details can be found, e.g., in [3] and [29])

Re(ko,)
2Im(k, )

stored energy

— = . (24
' radiated energy per cycle (24)

The explicit form of the Q matrices depends also on the
expansion functions, i.e., on the choices (9)—(11) (e.g., the
regular spherical waves can also be used in (11) instead of
the spherical harmonic, cf. [14]). However, the zeros of (22)
should be independent of these choices and this fact can
be used as a check on the numerical results. Once a search
in the complex k, plane has yielded a @ matrix which
satisfies (22) to a sufficient degree of accuracy, it is rela-
tively easy to calculate a corresponding coefficient vector

4% 0
o DY
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@) of the surface current on Sy _,, by, e.g.. a Gaussian

elimination procedure, provided the k, is a simple zero of
the Q matrix. In consequence, a normalized resonant field
in the exterior region can be obtained by introducing the
coefficient vector a*"’ into (20) and then (2). The proce-
dure for computing surface currents and resonant fields
mentioned above is very similar to that used in the mo-
ment method [10]. However, we do not discuss the proce-
dure in detail in the present paper.

I11.

In practical calculations the determinant in (22) can
only be obtained from a truncated Q matrix. Therefore,
only an approximation of the resonance frequency and
quality factor of a certain mode can be obtained, except
for concentric layered spherical objects of which the Q
matrices are diagonal. As the truncation size, denoted by
! ax» increases, this approximation can be expected to
converge to a definite value. Therefore the behavior of the
results as a function of truncation order plays an impor-
tant role in assessing the accuracy of the computed results.

For a Q matrix of truncation size /_, (/=1.2, -,/ ..
and m=0,1,---,/, cf. (3)), the matrix order is given by
2(/ pax +2) X 1, That means we have to calculate, for,
e.g., ., =10, O matrices of order 240X 240 and their
determinants in the search process. In the case of res-
onators with general geometry, most of the Q matrix
elements computed from the surface integrations accord-
ing to (15) do not vanish. However, for certain special
geometries, such as axisymmetric bodies, the computations
can be reduced substantially. In an axisymmetric case, the
surface integrations in (15) degenerate to line integrations
over the contours of corresponding surfaces, and all ele-
ments in off-diagonal blocks (where m # m’) are equal
zero. A general form of the Q matrices for an axisymmet-
ric object is written as follows:

CLASSIFICATION OF MODES

g7

le
20

1o
2e

1
Ay
1
C;

Bl
D;.
A},
~Ch

le
20

- B}, lo

D}, 2e

2
Ay
2
Cr

B le
D} 20
- B; lo

2 2
1 Dy 2e

o't’'= 1e 20 lo e le 20 lo

2e le 20 lo 2e
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The decomposition of the Q matrices into smaller diagonal
blocks indicates that we may search zeros for a particular
value of the index m, which amounts to choosing a partic-
ular azimuthal dependence of the resonant field in ad-
vance. Furthermore, since the determinants of
A, B 4, —B

(C, D) and (—C, D)
are identical, the zeros need only be searched for in a block
of order 2X 1/, for a fixed m (m > 0), which correspond
to hybrid electromagnetic modes (HEM). For m =0, the
block is decoupled into even smaller pieces with respect to
the two types of vector spherical waves :,Uleo ; and 4§,
Since ¢;,, has only an €, component while ¥, ,0; has only
é, and é, components (cf. (3)), the zeros computed from
the small block A9, correspond to TE and from the block
D}, to TM resonant modes, respectively.

The zeros of the matrix determinant of the blocks can be
searched for in the complex plane by means of, e.g.,
Muller’s method [30], or a similar iterative procedure which
does not require a knowledge of the derivative of the
function whose zeros are being sought. The iteration is
terminated when the change between two consecutively
computed k, values is less than some prescribed small
value. As a rule, these procedures must be supplied with
two starting points reasonably close to the resonance fre-
quency of the mode of interest. These starting points can
be obtained, say, by a preliminary analysis of the scatter-
ing cross sections o, [13] of the resonator in the resonance
range by using (19), (20), and

T
%= %If.,l2 (25)

under the illumination of two perpendicular plane waves
(TE and TM incident waves, as shown in Fig. 2). The
peaks in the curves of the scattering cross sections can also
be used to identify the resonant modes, as was done by
Barber et al. in [19] for homogeneous dielectric spheres.
The classes of TE, TM, and HEM modes are easily distin-
guished from the curves of the scattering cross sections,
since we never see the peaks of TM resonant modes from
the curves of the TE incidence and vice versa. The reso-
nance frequencies of different modes of axisymmetric bod-
ies from the same class are distinguished by three sub-
scripts in this paper, »; = 7,5 ,. The first index, m, always
refers to the azimuthal dependence of the mode as either
cosm¢ or sin m¢, while the second and the third index, /
and & + p, refer to the numbers of field extrema within the
resonator in the radial and axial directions, respectively,
where 8, 0 < § <1, is used to denote fractional half-period
field variations in the resonator along the symmetry
axis [3].

As an example, consider a cylindrical dielectric res-
onator in free space which has been analyzed by many
authors using different methods. The resonator material is
€; = 38, its radius is @ = 5.25 mm, and its length is L = 4.6
mm. First the scattering cross sections o, are computed
and then plotted in Fig. 2. The first peak on the left side of
Fig. 2(a) can be identified as the TE;; mode because there
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Fig. 2. Normalized scattering cross sections of a finite dielectric cylin-
der. (a) TE incidence. (b) TM incidence.

is no peak at the same position in Fig. 2(b) and a coupling
between the incident field and the resonance can occur at
all @ angles except normal incidences (e.g., § = 0°), whereas
from neither 8 = 0° nor 8 = 90° can resonance be observed
for the TE ;. , mode. The second peak from the left in
Fig. 2(a) is identified as the HEM,;, since the electric far
field of the HEM, ;5 modes does not have an é, compo-
nent (cf., e.g., [10]), and thus there is no peak response for
the TE incidence from 8 = 90° at this frequency. This fact
suggests that the best experimental setup for measuring the
resonance properties of the TEy,; mode could be the worst
for the HEM,,; mode, i.e., accurate experimental observa-
tions of the resonance of the HEM,;; mode are not possi-
ble for the resonator in free space, if one tries to observe a
TE resonant field of the mode from 6 = 90°. Furthermore,
the third peak in Fig. 2(a) is the HEM,,; since no peak
response for the TM incidence can be seen from 6 = 90°,
and the fourth is the HEM,,; because no peak is observed
for the TE incidence from 6 =0°, 90° or TM incidence
from # = 0°. The remaining peaks could be classified in a
similar way (cf. the field patterns of the resonant modes in,
e.g., [10]). Of course, there exist many modes which have
similar scattering characteristics as a function of 4 at
different frequencies, such as the TEy,; and TE,; modes
in Fig. 2. In these cases, a classification of these resonant
modes requires calculations of the resonant field in the
vicinity of the resonator.
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TABLE 1
CoMPUTED RESONANCE FREQUENCIES AND QUALITY FACTORS VERSUS
Di1rFERENT TRUNCATION SIZES /. COMPARED WITH MEASUREMENTS AS
WELL AS WITH RESULTS FROM OTHER METHODS FOR A DIELECTRIC
PILLBOX (€; = 38, gy =1, a =5.25 mm, L = 4.6 mm) IN FREE SPACE

[ Resonant Frequencies (GHz)

lmaw TEo1s HEMy1s HEMi2s TMors HEMzi5 TEo1s41 HEMa3s TEgys

6 4.8619 6.3391 6.6639 7.4659 7.7543 8.3127 8.5035 9.1722

8 4.8604 6.3450 6.6598 7.5371 7.7636 8.3336 8.4832 9.1470

10 4.8603 6.3450 6.6537 7.5370 7.7606 8.3315 8.4771 9.1521

12 4.8604 6.3450 6.6530 7.5373 7.7616 8.3308 8.4780 9.1535

14 4.8604 6.3450 6.6527 7.5380 7.7621 8.3310 8.4779 9.1337

16 4.8604 6.3450 6.6520 7.5384 7.7621 8.3311 8.4768 9.1535
Measured[10] 4.85 — 6.64 7.60 7.81 — — —
Moment Method[10] 4,829 6.333 6.638 7.524 7.752 — —_ —
Perturbation of PMC(3} 4.8551 — — — — 8.1937 — —
Asymptotic Method[8] 4.87 — — — — — — —

Quality Factors due to radiation

lmas TEo1s HEMu s HEMi2s TMoys HEMzs TEo1541 HEMz2s TEoas

6 40.848 30.853 57.009 59.199 333.28 303.43 1206.0 45.804

8 40.819 30.945 ©54.059 75.042 337.51 301.42 1137.9 44065

10 40.819 30.896 51.082 75.790 339.08 300.97 1038.6 43.645

12 40.820 30.852 50.809 76.075 337.98 300.91 1036.5 43.743

14 40.819 30.849 50.705 76.694 337.55 301.00 1030.0 43.747

16 40.819 30.853 50.316 76.921 337.66 301.02 1018.4 43736
Measured[10] 51 — 64 86 204 — — —
Moment Method[10] 45.8 30.7 52.1 76.8 3271 — — —_
Asymptotic Method([8] 42.31 — — ~- — — — —

The method of extracting the starting points from the
peaks of the cross sections is very similar to that of
analyzing experimental curves in transmission measure-
ment, i.e., taking the position of a peak as an approximate
resonance frequency and the ratio of the height to the half
width of the peak as an approximate quality factor. From
these starting points, more accurate resonance frequencies
and Q factors are computed and listed in Table 1. The
convergence of the present method is also shown in Table
I for different truncation orders. The agreement between
the results of the null-field method and other methods is
reasonably good.

The null-field method has also been used to compute a
universal mode chart for cylindrical dielectric resonators
with € =38 in free space. The chart is shown in Fig. 3,
displaying the value of k,a and the quality factor as a
function of the ratio, a/L, of the resonator radius to
length for the eight lower modes listed in Table 1. Five of
the kya curves are also compared with the results com-
puted using the method of moments [9] in Fig. 3. In
general the results from the two methods agree very well
except for those of the TM,; mode at higher aspect ratio
(i.e., at the two ends of the TM,; curve). Moreover, curves
computed using the present method are very smooth and
no kinks can be observed on the present scale. Some
computed results for the TE;;; and HEM,;; modes from a
general mode-matching method [12] are also included in
Fig. 3(a) for comparison. A good agreement can be ob-
served. From Fig. 3(b) we see that the HEM,,; mode has
the lowest Q wvalue, i.e., the strongest radiation effect,
when a /L > 0.85. This mode has been utilized in design-

ing a resonant cylindrical dielectric cavity antenna [31].
However, when the length, L, is equal to or greater than
the diameter, 2a, of a pillbox (for the case €= 38), the
TM,,s mode seems more suitable for use in an antenna.

As a third example, we show how the resonance fre-
quencies and quality factors change when the above-
mentioned cylindrical homogeneous resonator gradually
changes half of its lateral wall and upper flat surface into
half a spheroidal surface (cf. Fig. 4) according to the
superellipsoid function (x"/a” + y"/b" =1, with n chang-
ing from infinity to 2). Fig. 4 depicts the theoretical mode
chart of some lower resonant modes of such a resonator.
From this figure one finds that, as expected, neither reso-
nance frequencies nor Q factors vary very much when the
upper edge of the pillbox is rounded off (the lower flat
surface of the pillbox is supposed to be mounted on a
substrate with 1ts electrical properties close to those of free
space) and that curves of different modes do not intersect
each other; i.e., no degeneration occurs during smoothen-
ing.

In this section, the null-field method has been applied to
a study of homogeneous dielectric resonators. Examples of
composite resonators are given in the next section.

IV. ComPOSITE RESONATORS

Most composite resonators are designed with the pur-
pose of obtaining frequency tunable resonant elements in
microwave components, such as microwave filters and
oscillators [32]. Taking several composite structures of
resonators as examples, we compute frequency charts us-
ing the null-field method in this section.
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Fig. 3. Universal mode chart for isolated cylindrical dielectric res-

onators with relative permittivity ¢; = 38. Lines are computed using the
present method. The bullets o o o are from the mode matching method
in [12]. Other markers are from the method of moment [9]. (a) Reso-
nance. (b) Quality factors.

We first consider a structure of two dielectric (or ferrite)
disks which can be used in either a filter [33] or a circula-
tor [34]. The individual resonators in the structure are
cylindrical disks of radius r and thickness ¢ which are
mounted coaxially and separated by a distance d. Assum-
ing that each resonator has the same electric constant and
that they are identical in size, the whole structure can be
described by taking S, as the surface of a pillbox with
radius » and length L =27+ d filled with the material of
the disks, and the core, V,, as a shallower pillbox with the
same radius r and length d having electromagnetic prop-
erties the same as the exterior medium (cf. Fig. 5). The
resonance frequencies of the two lowest TE modes, TE;
and TE;,,, as functions of the distance d between the
two disks are computed and plotted in Fig. 5 for a
double-disk structure used in a frequency-stabilized band-
rejection filter. Some measured results [33] are also in-
cluded in Fig. 5 for comparison. The maximum relative
difference of calculated results with respect to measure-
ments is 1.85 percent for the case € =96 and 2.90 percent
for e = 80, respectively. The frequency tuning range for d
varying from O to ¢ is about 15 percent for both cases. In
this range, the relation between frequency and k is rela-
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Fig. 4. Resonance frequencies and quality factors of the six lowest
modes of a partially smoothened cylinder versus the exponential, #, of
the superellipsoid function (x"/a” + y”/b" =1). The values indicated
by bullets, « « «, on the right-hand side vertical axes are extracted from
the corresponding curves in Fig. 3 for a pillbox resonator with the same
radius and length. (a) Resonance frequencies. (b) Quality factors.
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Fig. 5. Resonance frequencies of the two lowest TE modes of a double
dielectric disk resonator with different permittivities versus the distance
between the two disks. The measured results are adopted from [33].

tively far from linear. If 4 is sufficiently large, the reso-
nance frequencies of both the TE, ; and TE,,; ; modes of
the double disk gradually approach those of the TE;
mode of one of the single disks.

The double-disk resonator is a kind of mechanical fre-
quency tuning device. The resonance frequency can also be
tuned electrically by attaching a microwave ferrite disk on
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Fig. 6. Resonance frequencies and quality factors of seven lower modes
of a dielectric ring with a ferrite cylindric plug versus the permeability
of the plug. The circles in the figure represent calculations using the
asymptotic method for the dielectric ring (e, =1, p,=1). (a) Reso-
nance frequencies. (b) Quality factors.

a pillbox resonator and applying a magnetic field to it (cf.,
e.g., [35]). The magnetic field controls the magnetic proper-
ties of the ferrite, resulting in a shift in the resonance
frequency (the lowest mode TE,; was used). Tuning band-
widths of the order of 3 percent for this construction have
been reported [35]. Since the magnetic field is strongest
down the center, instead of on the flat faces, of a cylindri-
cal resonator for the TE,; mode, one would expect to
achieve a wider frequency tuning range by removing a
cylindrical dielectric plug from the resonator center and
inserting a ferrite one. Assuming that the permeability
tensor of the ferrite can be expressed by a scalar (e.g., a
demagnetized polycrystalline ferrite material, cf. [34]), and
noting that the permeability of partially magnetized fer-
rites is a certain function of the strength of the applied
magnetic field [36], one can approximately describe the
characteristic of a ferrite under an applied tunable mag-
netic field by changing the permeability of the ferrite. In
Fig. 6, a chart of resonance frequencies and Q values
versus different permeability values of a ferrite plug
mounted in a dielectric ring is given. The ring has the same
radius a, length L, and permittivity ¢; as the pillbox
resonator in the first example in Section III. From Fig. 6,
one observes that the permittivity of the plug could be
changed from e, =1 to 15 without disturbing the resonant
frequency of the TEy; mode too much since the electric
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Fig. 7. Resonance frequencies of the TEy s mode of a conically shaped
dielectric ring with a ferrite conical plug versus the position of the plug
for different permeabilities.

field is weak for that mode near the resonator center. One
also observes that the HEM,,; mode, when ¢, =15 and
i, > 38 in the plug, becomes the lowest mode with a very
high Q value, which suggests that a much smaller res-
onator can be designed using this mode without any metal-
lic housing, provided a material with very high perme-
ability and very low loss is available. Furthermore, the
frequency tuning range can be easily obtained from Fig. 6
if one knows the relation between the permeability of a
ferrite and the strength of the applied magnetic field.

In order to increase the tuning range, a combination of
mechanical and electrical tuning may be employed by
giving the hole of the dielectric ring as well as the ferrite
plug a conical shape, as shown in Fig. 7. However, from
the calculated results in this figure, one can see that the
resonance frequency of the TE;; mode is not very sensi-
tive to displacements of the ferrite plug so long as the
permeability of the plug remains close to unity.

V. CONCLUSION

In this article we have employed an approach within the
general framework of the null-field method to investigate
the resonance properties of several kinds of composite
resonators. For the composite rotationally symmetric res-
onators discussed in the present paper, the null-field
method shows good convergence and reasonable agree-
ment with other computed and measured results. We are
also aware in our numerical experiments that for certain
geometries, e.g., a pillbox attached to a ferrite cylindrical
disk on one flat face, the expansion functions chosen in
(11) do not yield convergent results as good as those
produced by the regular spherical vector wave function
(cf., eg., [14]). This fact suggests, as is mentioned in
Section II, that alternative choices of expansion functions
are often helpful in checking the computed results. All
computed results for composite resonators reported in the
present paper have been checked by using at least two
different expansions.

Finally, we note that it is of interest to carry out a
corresponding investigation concerning metallic shielded
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composite resonators. The results from such an investiga-
tion will be reported in a subsequent paper.
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